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Abstract

Convective heat transfer in a channel filled with a porous medium has been analyzed in this paper. The flow field is
analyzed considering both the inertia and solid boundary effects and the thickness of the momentum boundary layer is
found as a function of the Darcy and the Reynolds number. The two-equation model is applied for the heat transfer
analysis and theoretical solutions are obtained for both fluid and solid phase temperature fields. The Nusselt number is
obtained in terms of the relevant physical parameters, such as the Biot number for the internal heat exchange, the ratio
of effective conductivities between the fluid and solid phases, and the thickness of the momentum boundary layer. The
results indicate that the influence of the velocity profile is characterized within two regimes according to the two pa-
rameters, the Biot number and the conductivity ratio between the phases. The decrease in the heat transfer due to the
momentum boundary layer is 15% at most within a practical range of the pertinent parameters. © 2001 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

The utilization of porous inserts has proved to be
very promising in heat transfer augmentation [1,2]. One
of the important porous media characteristics is rep-
resented by an extensive contact surface between solid
and fluid phases. The extensive contact surface enhances
the internal heat exchange between the phases and
consequently results in an increased thermal diffusivity.
To account for the effect of the extensive contact surface
in the analysis, it is required to utilize the two-equation
model in which the two phases are treated separately
and thermal communication between the phases across
the contact surface is considered [3.,4].

In the meanwhile, the increase in the pressure loss
should also be considered to utilize the porous insertions
into practical heat exchangers. From this point of view, a
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porous medium for this application is generally recom-
mended to have a large porosity and permeability. In these
situations, the velocity distribution and the resultant
pressure loss are expected to be influenced much by the
inertial force caused by the microstructure of porous
media as well as the viscous drag by the impermeable wall
containing the porous media [5,6]. Subsequently, the heat
transfer is also expected to be influenced by these effects.

In the present study, the convective heat transfer in
porous media is analyzed theoretically utilizing the two-
equation model with the velocity distribution consider-
ing both the inertia and viscous effects. Based on the
theoretical solution, the influence of the momentum
boundary layer on the convective heat transfer in porous
media is investigated.

2. Physical model and mathematical formulation

The problem under investigation is related to forced
convective flow through a channel filled with a porous
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Nomenclature

a surface area per unit volume (1/m)
Bi Biot number defined in Eq. (11)
Cg Ergun coefficient

Da Darcy number defined in Eq. (5)

H half of the channel height (m)

h; interstitial heat transfer coefficient (W/m” K)
hy wall heat transfer coefficient (W/m” K)

K permeability (m?)

kesr effective conductivity of the fluid (W/m K)
Nu Nusselt number defined in Eq. (13)

qw heat flux at the wall (W/m?)

Rex  Reynolds number defined in Eq. (5)

T temperature (K)

Tw wall temperature (K)
U fluid velocity (m/s)
U. fluid velocity at the channel center (m/s)

Greek symbols

0 thickness of the momentum boundary layer
nondimensionalized by H

€ porosity

x nondimensional parameter defined in Eq. (11)

Subscripts

a simplification of the velocity function

D Darcian flow model

f fluid

] solid

medium. When the flow in the channel is fully devel-
oped, the momentum equation can be written as [7]:

du 1 Rex ,

o a0 D=0 ®
du

i = 2
i 0 atn=0, (2)
u=0 atn=1, (3)

in which the nondimensional variables and parameters
are defined as:

U y
-2 =2 4
“uo "t “)
K CrUK'/?
Da=—, Reg = ) 5
= K y (5)

When the heat transfer is fully developed, the energy
equation for a constant heat flux boundary condition is
obtained as [3]:

0%0; . _
XW + Bi(0s — 0r) =7, (6)
020, .

o — Bi(6s — 6;) =0, (7)
00y 00,
T _%% -

an = o atn =0, (8)
0=0,=0 atn=1, 9)

in which the nondimensional variables and parameters
are defined as:

ks,eff(Tf — TW)/H

O = ————
qw
kse Ts - Tw H —
05 = .,ff( )/ ) u:L7 (]0)
9w (u)
hiaH? kr et
Bi = , g = e 1
ks,eff ks.eff ( )

The wall heat transfer coefficient is defined by

qw
hw = N 12
T~ {uTi) /) "
where () designates the average over the channel cross-
section. The Nusselt number based on the channel hy-
draulic diameter and the effective fluid conductivity can
be presented as

_4hyH 4
ke 2(— (ur)/(u))

Nu (13)

3. Momentum boundary layer
3.1. Simplification of the velocity equation

The analytical solution to the momentum equation,
Egs. (1)-(3) is obtained by Vafai and Kim [7] as:

C+C
u=1- 12— 2 sech’[C3(n + Cy)), (14)
1
C = %Da*lReK,
a4
C, = Da +§Da Rex, (15)
VCi + G
CG=—7—",
2
1 _ C
Cy = ——sech™ —
TG C+ G,

The temperature distributions for the fluid and solid
phases can be obtained by substituting Eq. (14) into Eq.
(6) and integrating twice Eqs. (6) and (7) simultaneously.
However, the analytical integration is nearly impossible
due to the mathematical complexity of the velocity
equation, Eq. (14)
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In the meanwhile, it is found that the velocity dis-
tributions for various values of Da and Rex are very
similar to each other just within the momentum
boundary layer even though the thickness of the
boundary layer depends largely on the parameters.
Based on this finding, a simple functional form is in-
troduced to represent the velocity distribution approxi-
mately as follows:

cosh(n/9)
~ cosh(1/0)" (16)

Uy =

In this work, to approximate the general velocity dis-
tribution with Eq. (16), the parameter, 0, is so obtained
as a function of Da and Reg that the difference between
the velocities evaluated from Egs. (14) and (16) is min-
imized. Integrating Egs. (14) and (16) over the channel
cross-section yields the average velocities as:

<u>:17C1+C2

() = 1 — Stanh(1/0). (18)

[tanh(C3(l +C4)) ftanh(C3C4)], (17)

Using the least squares method with the assumption of

0 < 1, 0 minimizing the velocity difference between

Egs. (17) and (18) is obtained as

5— C+G
eYe:

[tanh(Q(l + C4)) — tanh(C3C4)]. (19)

The comparison between Eqs. (17) and (19) reveals that
the parameter, 6, represents exactly the displacement
thickness due to the momentum boundary layer. In Fig.
1, the velocity profiles obtained by the exact solution,
Eq. (14), are shown only near the wall by normalizing
the distance from the wall by the parameter, 6. The
values of the parameter, J, are evaluated from Eq. (19)
for each set of Da and Rex and are arranged in a tablet
in Fig. 1. With the new coordinate, the velocity profiles
for various values of Da and Reyx are found to merge

(1-n)/38

Fig. 1. Velocity distributions within momentum boundary
layer.
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Fig. 2. Thickness of the momentum boundary layer.

nearly into a single curve. The velocity profile using the
approximating function, Eq. (16) is also plotted in Fig.
1. The approximating velocity profile is so well coinci-
dent with the exact velocity profiles that it is almost not
distinguishable from others. The difference between the
velocities obtained by Egs. (14) and (16) is found to be
1.8% at most within the parameter range shown in Fig.
1, and to decrease with a decrease in Rex.

3.2. Thickness of the momentum boundary layer

The variation of the thickness of the momentum
boundary layer, J, with respect to Da and Rey is shown
in Fig. 2. The asymptotic behavior is obtained by ap-
plying extreme values of Reg into Eq. (19) and shown as
dotted lines in this figure. An order of magnitude anal-
ysis is also made on the momentum equation Eq. (1),
within the boundary layer to yield
1 1
?NE(I + Rex). (20)
This results in a similar dependency of the thickness of
the momentum boundary layer to that shown in Fig. 2.

4. Heat transfer
4.1. Analytical solution to the two-equation model

As stated previously, it is nearly impossible to find
the analytic solution to the temperature distributions
using the two-equation model with the exact velocity
profile due to the mathematical complexity of the exact
velocity function, Eq. (14). In the meanwhile, the ap-
proximate velocity function, Eq. (16), has the same
functional form as that of the exact velocity profile ne-
glecting inertia force, and the corresponding solution to
the two-equation model is already known [4]. Therefore,
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the general solution to the two-equation model can be
obtained by approximating the exact velocity profile
considering both the inertia and viscous effects with Eq.
(16) and applying this into the two-equation model. This
yields:

1 1 1/1 5
—— L [Lopop-L _+7)
: <ua>(1+x){2(" ) x(ﬁ 1- 228

(o) (it 1
(1-sohton) o

X

cosh (1/0)

where

Bi(l1+y)
4

. (23)

Numerical integration of the energy equation applying
the exact velocity profile, Eq. (14), for several sets of
parameters reveals that the analytical solution, Egs. (21)
and (22), is accurate with the maximum difference of
1.5%.

The Nusselt number can be obtained by substituting
Eq. (21) into Eq. (13).

4.2. Influence of the momentum boundary layer on the
heat transfer

The Nusselt number is depicted in Fig. 3 as a func-
tion of Bi and é for the two extreme values of y, 107¢
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and 10°. The Nusselt number is normalized by the
Nusselt number for the case without the momentum
boundary layer, i.e., the case of the Darcian flow. Ob-
viously, the normalized Nusselt number is shown to
decrease with an increase in the thickness of the mo-
mentum boundary layer. When y = 107, the normal-
ized Nusselt number increases with the Biot number
until Bi = 0.1 and decreases for further increases in Bi
values. Meanwhile, when y = 10°, the normalized Nus-
selt number is not influenced by the Biot number.

To show more clearly the influences of the par-
ameters, Bi and y, the normalized Nusselt number for
0 = 0.1 is depicted in Fig. 4 as a three-dimensional plot.
This figure reveals the existence of two distinct regimes.
Except the narrow boundary region between the two
regimes, the normalized Nusselt number is shown to

Fig. 4. Nusselt number reduction due to the momentum
boundary layer (6 = 0.1).
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Fig. 3. Nu divided by Nup: (a) x = 107%; (b) y = 10°.



D.-Y. Lee et al. | International Journal of Heat and Mass Transfer 45 (2002) 229-233 233

have a constant value in each regime. From Fig. 4, the
regime where the normalized Nusselt number is rela-
tively large compared with other regime can be identified
as y < Bik 1.

Referring to Lee and Vafai [3], the energy equation,
Egs. (6) and (7) can be reduced to a simpler form by
considering only the dominant factors in each regime as
follows:

— Bily ~u where y < Bi < 1, (24)
30 .

Xa—nz%u where x> 1 or x> Bi, (25)

R0 .

e ~u where y <1 and Bi > 1. (26)

It can be found from the above equations that the fluid
temperature profile is determined directly by the velocity
profile in the regime where y <« Bi < 1, and by the
double integral in the other regimes. For this reason, the
influence of the velocity profile on the heat transfer
comes to be distinguished in each regime, which results
in the two different normalized Nusselt numbers for the
two distinct regimes.

5. Conclusion

The convective heat transfer in a channel filled with a
porous medium is investigated based on the two-equa-
tion model with the velocity distribution considering
both the inertia and solid boundary effects. A theoretical
solution to the temperature field is obtained and the
influence of the momentum boundary layer thickness on
the heat transfer is investigated. In the regime where
1 < Bi < 1, the decrease in the wall heat transfer due to

the momentum boundary layer is relatively small com-
pared with the other regime. The decrease is found 15%
at most within a practical range of the pertinent
parameters.
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